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Broad theoretical arguments are proposed to show, formally, thamtmgnitude Gof the temperature
gradientsin turbulent thermal convection at high Rayleigh numbers obeys the same advection-diffusion equa-
tion that governs the temperature fluctuatibnexcept that the velocity field in the new equation is substan-
tially smoothed. This smoothed field leads to a —1 scaling of the spectr@rirothe same range of scales for
which the spectral exponent dflies between —7/5 and —5/3. This result is confirmed by measurements in a
confined container with cryogenic helium gas as the working fluid for Rayleigh number Ra£ 0% Also
confirmed is the logarithmic form of the autocorrelation functiorGofThe anomalous scaling of dissipation-
like quantities ofT andG are identical in the inertial range, showing that the analogy between the two fields
is quite deep.
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While statistical properties of temperature fluctuations inesis can be employed when necessary. More details of the
turbulent Rayleigh-Bénard convection have received considexperimental conditions and measurement procedure can be
erable attention experimentally and theoreticélge, for in-  found in Ref.[7].
stance[1-12] and references thergincorresponding prop-  In thermal convection, the temperature fidlgk,t) is ad-
erties of temperature gradients are still unexplored fromyected by the velocity field(x,t), which itself is generated
theoretical or experimental points of view. In the presentyy gensity differences set up between the top and bottom

paper, we study statistical properties of the magnitude of th@valls. We will consider incompressible flow obeyifg-v
temperature gradients emphasizing their qualitative and g ith unit density for simplicity. The relevant equations
quantitative similarity to those of the temperature fluctua—under the Boussinesq approximaﬁon are

tions themselves. Theoretical considerations will be based on

an equation to be derived for the gradient magnitude, and the N 2

results will be compared with measurements in turbulent P Vp-(v: V)v+VV+agTz, (1)
convection in a confined container of circular cross section.

We wish to emphasize the crucial difference between the JT

spectrum of the temperature gradient and that of the gradient —=—(v-V)T+DVZT. 2)
magnitude While the Fourier transform of the temperature at

gradient is simply proportional to the product of the FourierHere b, v, @ g 2 andD are, respectively, the pressure

transform of the temperature and the temporal frequency,. o L ; : gy
there is no such straightforward relation between the speéf{lnematlc viscosity, isobaric thermal expansion coefficient,

trum of the gradient magnitude and that of the temperaturg.ccelerat'on due to gravity, 'ghe unit vector in th_e upward
time series. To connect the two, we need to use some addiirection, and the thermal _d|ffu.5|V|ty. Eq_uatlo(m) Is the
tional physics, as we shall discuss here. Indeed, the spectrupfgndard scalar advection-diffusion equation, except that the
or the autocorrelation function of the gradient magnitude of/€10City field is coupled to the temperature field. This “ac-
the temperature can give additional information on the thertiVe” nature of the temperature fluctuations in convection
mal convection process. make_zs their statistical properties different from_those of a
The measurement apparatus has unity aspect ratio. THR@ssivescalar advected by a turbulent velocity with no back
sidewalls of the apparatus are insulated, and the bottom arf§action. Restricting attention, for. simplicity, to Prandtl num-
top walls are maintained at constant temperatures; the boPers Of the order unity, the experimentally measured spectral
tom wall is held at a slightly higher temperatuethan the dgnsﬂy of temperature quctuatlon§ in the inertiabnvec-
top wall. The working fluid is cryogenic helium gas. We tive) range rolls off_ at a rate that is clos_er to -1.4 t_han to
measure temperature fluctuations at various Rayleigh nuni->/3: the latter being the case for passive scalars in three-
bers towards the upper end of this range, in which the condimensional homogeneous turbuleria¢2,4,5,7.
vective motion is turbulent, but use the data obtained at the 1he €quation for temperature gradieiis= VT can be
Rayleigh number Ra=1%10" in the present paper. Time '€adily derived from2) as

traces of fluctuations are obtained at a distance of 4.4 cm 3G IG _ dj #G;
from the sidewall on the center plane of the apparatus. This ot =7 X ox Gj+D—7, 3
] 1

position is outside of the boundary layer region for the Ray-
leigh number considered here. At this Rayleigh number, thevith the indicesi and j representing the space coordinates,
mean wind(which is the large-scale circulation within the and the summation over repeated indices is assumed. The
convection apparatliss well developed so Taylor’'s hypoth- magnitudeG of the temperature gradient is determined by
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G =Gn, wheren is the unit vector with its direction along the lation between gradienisee below for more comments
vector G. Multiplying both sides of Eq(3) by n;,, making If we use conditiong7)—9) in the presence of the incom-
summation ovef, and taking account of the fact thq‘“tzl, pressibility conditiondv;/ 9x;=0 we obtain

we obtain

an; \?
%?(v- V)G +DV2G -G, (4) <>\>n=—D<<5j> >n. (10

which is formally similar to Eq(2) except for the last term

That is, the f | diff betw for T and th
in (4). The coefficient\ in this term has the form ais, the formal difference between Eg) for T and the

conditionally averaged Ed6) for G is reduced to theX”
i an; \2 term with the\ given by Eq.(10). Equation(6) can then be
A= g D(&) : (5 reduced, in Lagrangian variables corresponding to the
] 1 smoothed velocitfv),, to

Let us now search for circumstances under which the last
term in Eq.(4) is small in the inertial range. The second term dG
in A is assured to be small because the diffusiiiitis small. — =(\),G, (11
But the nature of the “stretching” part on the right-hand side dt
of Eq. (5) is not apparent without further considerations.

As a further step, let us make the following conditional with the “multiplicative noise™(\), given by Eq.(10).
average of Eq(4). Fix the magnitudes in the vector field Weak diffusion of Lagrangian “particles” can be de-
G=Gn while performing an average over all realizations scribed as their wandering around the deterministic trajecto-
permitted by Eq.3) of the direction vector fielth. Let us  ries. The introduction of a weak diffusion is equivalent to the
denote this ensemble average(as),. From the definition, introduction of additional averaging in E¢L1) over random
this averaging procedure does not affécttself, but modi-  trajectoried13]. The small parametd in (10) and(11) will
fies the velocity fields, which in turn modifies the coefficient then determine a slow time in comparison with the time

N in Eq. (4). We may write scales in the inertial range and should therefore not affect the
scaling properties o6 in that range.
@z_«\,) . V)G +DV3G +(\),G (6) We emphasize again that the conditional average indi-
at " e cated by(--), is quite different from the global average in-

dicated by(---). For this reason, the quantitg in Eq. (6)

and (6), but not all possible formal solutions of Eds) and remains a fluctuating variable. To eliminate the stretching
(6) satisfy Eq.(3); similarly, not all formal solutions of Eq. part from the condlt_lonally a_v_eraged coefﬁue(rn_)n, one

(6) satisfy Eq.(4) while all solutions of Eq(4) do satisfy Eq. does not need to sat|sfy_ conc_i|t|o(75)—(9) for all realizations
(6). In particular, the solutions of Eq¢4) and (6) are the of the temperature gradient fie®, but only for the subset of
same only if:(a) the initial conditions for the two equations realizations that gives the main statistical contribution to the
are the same, ant) if realizations of (v}, and of (\),, spec;r'um of the magnitud@ in the ipertial range. Ther'efore,
related to these initial conditions by the conditional averag-condnmns(?)_(g) could well be violated globally without

: . ; ffecting the main conclusion.
dure, taken from th licable solut f 9 nain c . y
:23 &r)oce ure, are taken from fhe applicable SOlULons o The essential point here is that the conditionally averaged

It is difficult to guessa priori when (\), is negligible, velocity (v),, is smoothed substantially in comparison with

because there is no small parameter for the stretching part g\fhile.the ﬂuctu_ation ofs iiself is .Sti" rap_id in. the advection
\. Therefore, let us consider a set of conditions, presumabl iffusion equation(6) (because it remains intact under the

applicable to the inertidlconvective range, which can result tyopr?ggl'0;‘:‘('3uar\ézgﬁgé:ytxgn:];%fr;s edf;géttzjtggge:‘;??ﬁe
in {nin;dv;/ dx),=0. Thi n mbination of isotr ' _ o A
Wh<iCIh J;l:a'lldﬁs)(1>“ 0 s can be a combination of isotropy, stance, Ref[14] and references cited thergiis that the

spectral law for a quantity governed by the advection diffu-
(Min),=0( #j) (7) sion equation has a “-~1" region. The result owes itself to the
work of Batchelof{15], who applied this general idea to the
viscous-convection range of passive scalar fluctuations.
(), =D, = (), (8) While the two contexts are_qui;e different, they are the same
in the sense that the velocity field is smooth.
and directional randomness determined by the equation There is another way of deducing the -1 power law. We
(@) = ({0 9) recall that the spectral density of fluctuations of temperature
i1 ®7n = WHT/n\ @/ns in this region of scales has an approximately —=7/5 slope.
where ¢=dv,/ dx, for arbitraryk andl. One should not con- This slope can be derived by the dimensional considerations
fuse the condition$7)—(9) with global isotropy and statisti- used by Bolgian§16]. We may apply the same reasoning to
cal independence of the velocity and temperature gradient&q. (6). Thus, introducing an analogy of the dissipation rate
In particular, (7)—9) can be satisfied in the inertial range for G, namely, y-=dG?/dt, Bolgiano’s dimensional argu-
even in the presence of strong global anisotropy and corrgnents yield the scaling law fd& to be

It is worth noting that the solutions of E(B) satisfy Eqs(4)

and
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FIG. 1. Spectrum of a one-dimensional surrogate of the magni- ;f 10"
tude of the temperature fluctuations gradient in thermal convection. ;40 [ . ) . : : \ )
The straight line is drawn to indicate the power-law spect(@g). 0.01 0.1 1 10 100

T [s]

. 4/5 -2/51,~1
Bk ~ (x)™ gk (12 FIG. 3. Normalized moment§(7)P) and{x«(7)P) againstr for
in the inertial range. Figure 1 shows the corresponding specthe data obtained in convectio(p=2,3,4. The straight lines
trum observed foG in our experiment. drawn to indicate scaling are best fits to the data on the left of the
For the effectively smoothed velocity field, the space au-vertical arrow.
tocorrelation function can be characterized by a logarithmic

behavior[17] given by significant quantities. It can be seen readily from Fig. 2 that
L 7= 10 sec; this magnitude happens to be the same as that of
C(r) = (G(r)G(0)) ~ In(—), (13)  the largest plumegl8].
r The similarity of theT and G fields can also be seen for
or, using Taylor's hypothesis, in terms ofby the sc_aliqg c_)f the dissipation ratg itself. The Ioc.al tempera-
ture dissipation can be characterized by a gradient measure
T [16] as
C(7) =(G(nG(0)) ~ In| — |. (14
T
2
This is seen from Fig. 2 to apply quite precisely for the data. 0 (VT)dv
In the present approach, the active character of the tempera- x(r)=———, (15
ture in the convection manifests itself through nontrivial Ur

properties of the locally averaged velocity field in E)
such as the length scalein the space autocorrelation or the
time scaler in the time autocorrelation, both of which are

where(), is a subvolume with space scaleThe scaling law
for the moments of this measure,

WP
06 — ~ ¥, (16)
()P
05T is an important characteristic of the dissipation intermittency
oal [16,19. Using Taylor's hypothesis, one can define the local
. dissipation rate as
l_)
=03}
° J, (5
02f o \ dt
x(1) ~ ——, (17
01} T
0 and the corresponding scaling of the moments of the local
0.01 dissipation rat¢19] as
W, 18
FIG. 2. Autocorrelation functionC(7) plotted against log, (x(7)P TR (18

computed for the same data used for the spectral calculations. The
vertical arrow here and in Fig. 3 indicates the end of the inertial Analogous considerations can be brought to bear for the
range. magnitude of the temperature gradient
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14r o -G the data obtained in thermal convection. The slopes of these
12h o -T ¥ straight lines provid*e us with the values of the intermittency
exponentsu, and u,,, which are shown in Fig. 4. The two
r sets of intermittency exponents obtained TaandG are very
L o8} g close.
3 In summary, we have derived an equation for the magni-
061 tude of the temperature gradig@tin thermal convection and
04l shown that there are general circumstances under which the
¥ equation is identical to that governing the temperature itself.
02r The main difference is that the velocity appearing in the new
o . : ' equation for the gradient magnitude, being a conditional av-
1 2 3 4 erage, is a smoothed field. For the advection-diffusion equa-
P tion governed by a smooth velocity field, it is natural to
FIG. 4. Intermittency exponentg, and,u; extracted as slopes expect a power-law spectru_m with a slope_ of -1; measure-
of the straight lines in Fig. BEq. (18)]. ments of the spectral density & are consistent with this
expectation. The correlation function &f shows a logarith-
T (dG\2 mic behavior, also as expected. Finally, the scaling of the
f (—) dt square of the derivative d& has scaling exponents that are
o \ dt identical to those of the temperature itself, confirming that a
x(7) ~ - ' (19) deep analogy exists betwe@nand G in the inertial range.

with exponentsu;. We show in Fig. 3 the dependence of the  We thank J. Schumacher and V. Yakhot for brief discus-
normalized momentéy(7)P) and(x-(7)P) on r calculated for ~ sions at an early stage of the work.
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