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Broad theoretical arguments are proposed to show, formally, that themagnitude Gof the temperature
gradientsin turbulent thermal convection at high Rayleigh numbers obeys the same advection-diffusion equa-
tion that governs the temperature fluctuationT, except that the velocity field in the new equation is substan-
tially smoothed. This smoothed field leads to a −1 scaling of the spectrum ofG in the same range of scales for
which the spectral exponent ofT lies between −7/5 and −5/3. This result is confirmed by measurements in a
confined container with cryogenic helium gas as the working fluid for Rayleigh number Ra=1.531011. Also
confirmed is the logarithmic form of the autocorrelation function ofG. The anomalous scaling of dissipation-
like quantities ofT andG are identical in the inertial range, showing that the analogy between the two fields
is quite deep.
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While statistical properties of temperature fluctuations in
turbulent Rayleigh-Bénard convection have received consid-
erable attention experimentally and theoreticallyssee, for in-
stance,f1–12g and references thereind, corresponding prop-
erties of temperature gradients are still unexplored from
theoretical or experimental points of view. In the present
paper, we study statistical properties of the magnitude of the
temperature gradients emphasizing their qualitative and
quantitative similarity to those of the temperature fluctua-
tions themselves. Theoretical considerations will be based on
an equation to be derived for the gradient magnitude, and the
results will be compared with measurements in turbulent
convection in a confined container of circular cross section.
We wish to emphasize the crucial difference between the
spectrum of the temperature gradient and that of the gradient
magnitude. While the Fourier transform of the temperature
gradient is simply proportional to the product of the Fourier
transform of the temperature and the temporal frequency,
there is no such straightforward relation between the spec-
trum of the gradient magnitude and that of the temperature
time series. To connect the two, we need to use some addi-
tional physics, as we shall discuss here. Indeed, the spectrum
or the autocorrelation function of the gradient magnitude of
the temperature can give additional information on the ther-
mal convection process.

The measurement apparatus has unity aspect ratio. The
sidewalls of the apparatus are insulated, and the bottom and
top walls are maintained at constant temperatures; the bot-
tom wall is held at a slightly higher temperatureD than the
top wall. The working fluid is cryogenic helium gas. We
measure temperature fluctuations at various Rayleigh num-
bers towards the upper end of this range, in which the con-
vective motion is turbulent, but use the data obtained at the
Rayleigh number Ra=1.531011 in the present paper. Time
traces of fluctuations are obtained at a distance of 4.4 cm
from the sidewall on the center plane of the apparatus. This
position is outside of the boundary layer region for the Ray-
leigh number considered here. At this Rayleigh number, the
mean windswhich is the large-scale circulation within the
convection apparatusd is well developed so Taylor’s hypoth-

esis can be employed when necessary. More details of the
experimental conditions and measurement procedure can be
found in Ref.f7g.

In thermal convection, the temperature fieldTsx ,td is ad-
vected by the velocity fieldvsx ,td, which itself is generated
by density differences set up between the top and bottom
walls. We will consider incompressible flow obeying= ·v
=0 swith unit density for simplicityd. The relevant equations
under the Boussinesq approximation are

]v

]t
= − = p − sv · = dv + n¹2v + agTẑ, s1d

]T

]t
= − sv · = dT + D¹2T. s2d

Here p, n, a, g, ẑ, and D are, respectively, the pressure,
kinematic viscosity, isobaric thermal expansion coefficient,
acceleration due to gravity, the unit vector in the upward
direction, and the thermal diffusivity. Equations2d is the
standard scalar advection-diffusion equation, except that the
velocity field is coupled to the temperature field. This “ac-
tive” nature of the temperature fluctuations in convection
makes their statistical properties different from those of a
passivescalar advected by a turbulent velocity with no back
reaction. Restricting attention, for simplicity, to Prandtl num-
bers of the order unity, the experimentally measured spectral
density of temperature fluctuations in the inertialsconvec-
tived range rolls off at a rate that is closer to −1.4 than to
−5/3, the latter being the case for passive scalars in three-
dimensional homogeneous turbulencef1,2,4,5,7g.

The equation for temperature gradientsG; =T can be
readily derived froms2d as

]Gi

]t
= − v j

]Gi

]xj
−

]v j

]xi
Gj + D

]2Gi

]xj
2 , s3d

with the indicesi and j representing the space coordinates,
and the summation over repeated indices is assumed. The
magnitudeG of the temperature gradient is determined by
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G=Gn, wheren is the unit vector with its direction along the
vector G. Multiplying both sides of Eq.s3d by ni, making
summation overi, and taking account of the fact thatni

2=1,
we obtain

]G

]t
= − sv · = dG + D¹2G − lG, s4d

which is formally similar to Eq.s2d except for the last term
in s4d. The coefficientl in this term has the form

l = ninj
]vi

]xj
+ DS ]ni

]xj
D2

. s5d

Let us now search for circumstances under which the last
term in Eq.s4d is small in the inertial range. The second term
in l is assured to be small because the diffusivityD is small.
But the nature of the “stretching” part on the right-hand side
of Eq. s5d is not apparent without further considerations.

As a further step, let us make the following conditional
average of Eq.s4d. Fix the magnitudeG in the vector field
G=Gn while performing an average over all realizations
permitted by Eq.s3d of the direction vector fieldn. Let us
denote this ensemble average ask¯ln. From the definition,
this averaging procedure does not affectG itself, but modi-
fies the velocity fieldv, which in turn modifies the coefficient
l in Eq. s4d. We may write

]G

]t
= − skvln · = dG + D¹2G + kllnG. s6d

It is worth noting that the solutions of Eq.s3d satisfy Eqs.s4d
ands6d, but not all possible formal solutions of Eqs.s4d and
s6d satisfy Eq.s3d; similarly, not all formal solutions of Eq.
s6d satisfy Eq.s4d while all solutions of Eq.s4d do satisfy Eq.
s6d. In particular, the solutions of Eqs.s4d and s6d are the
same only if:sad the initial conditions for the two equations
are the same, andsbd if realizations of kvln and of klln,
related to these initial conditions by the conditional averag-
ing procedure, are taken from the applicable solutions of
Eq. s4d.

It is difficult to guessa priori when klln is negligible,
because there is no small parameter for the stretching part of
l. Therefore, let us consider a set of conditions, presumably
applicable to the inertialsconvectived range, which can result
in kninj]vi /]xjln=0. This can be a combination of isotropy,
which yields

kninjln = 0 si Þ jd s7d

and

kn1
2ln = kn2

2ln = kn3
2ln, s8d

and directional randomness determined by the equation

kninjwln = kninjlnkwln, s9d

wherew=]vk/]xl for arbitraryk and l. One should not con-
fuse the conditionss7d–s9d with global isotropy and statisti-
cal independence of the velocity and temperature gradients.
In particular, s7d–s9d can be satisfied in the inertial range
even in the presence of strong global anisotropy and corre-

lation between gradientsssee below for more commentsd.
If we use conditionss7d–s9d in the presence of the incom-

pressibility condition]vi /]xi =0 we obtain

klln = − DKS ]ni

]xj
D2L

n
. s10d

That is, the formal difference between Eq.s2d for T and the
conditionally averaged Eq.s6d for G is reduced to the “l”
term with thel given by Eq.s10d. Equations6d can then be
reduced, in Lagrangian variables corresponding to the
smoothed velocitykvln, to

dG

dt
= kllnG, s11d

with the “multiplicative noise”klln given by Eq.s10d.
Weak diffusion of Lagrangian “particles” can be de-

scribed as their wandering around the deterministic trajecto-
ries. The introduction of a weak diffusion is equivalent to the
introduction of additional averaging in Eq.s11d over random
trajectoriesf13g. The small parameterD in s10d ands11d will
then determine a slow time in comparison with the time
scales in the inertial range and should therefore not affect the
scaling properties ofG in that range.

We emphasize again that the conditional average indi-
cated byk¯ln is quite different from the global average in-
dicated byk¯l. For this reason, the quantityG in Eq. s6d
remains a fluctuating variable. To eliminate the stretching
part from the conditionally averaged coefficientklln, one
does not need to satisfy conditionss7d–s9d for all realizations
of the temperature gradient fieldG, but only for the subset of
realizations that gives the main statistical contribution to the
spectrum of the magnitudeG in the inertial range. Therefore,
conditions s7d–s9d could well be violated globally without
affecting the main conclusion.

The essential point here is that the conditionally averaged
velocity kvln is smoothed substantially in comparison withv,
while the fluctuation ofG itself is still rapid in the advection
diffusion equations6d sbecause it remains intact under the
conditional average, by virtue of its definitiond. Under these
typical circumstances, the natural expectationssee, for in-
stance, Ref.f14g and references cited thereind is that the
spectral law for a quantity governed by the advection diffu-
sion equation has a “−1” region. The result owes itself to the
work of Batchelorf15g, who applied this general idea to the
viscous-convection range of passive scalar fluctuations.
While the two contexts are quite different, they are the same
in the sense that the velocity field is smooth.

There is another way of deducing the −1 power law. We
recall that the spectral density of fluctuations of temperature
in this region of scales has an approximately −7/5 slope.
This slope can be derived by the dimensional considerations
used by Bolgianof16g. We may apply the same reasoning to
Eq. s6d. Thus, introducing an analogy of the dissipation rate
for G, namely, x* =dG2/dt, Bolgiano’s dimensional argu-
ments yield the scaling law forG to be
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EGskd , kx*l4/5sagd−2/5k−1 s12d

in the inertial range. Figure 1 shows the corresponding spec-
trum observed forG in our experiment.

For the effectively smoothed velocity field, the space au-
tocorrelation function can be characterized by a logarithmic
behaviorf17g given by

Csrd = kGsrdGs0dl , lnSL

r
D , s13d

or, using Taylor’s hypothesis, in terms oft by

Cstd = kGstdGs0dl , lnS t0

t
D . s14d

This is seen from Fig. 2 to apply quite precisely for the data.
In the present approach, the active character of the tempera-
ture in the convection manifests itself through nontrivial
properties of the locally averaged velocity field in Eq.s6d
such as the length scaleL in the space autocorrelation or the
time scalet0 in the time autocorrelation, both of which are

significant quantities. It can be seen readily from Fig. 2 that
t0.10 sec; this magnitude happens to be the same as that of
the largest plumesf18g.

The similarity of theT andG fields can also be seen for
the scaling of the dissipation rate itself. The local tempera-
ture dissipation can be characterized by a gradient measure
f16g as

xsrd =

E
Vr

s=Td2dv

vr
, s15d

whereVr is a subvolume with space scaler. The scaling law
for the moments of this measure,

kxsrdpl
kxsrdlp , r−mp, s16d

is an important characteristic of the dissipation intermittency
f16,19g. Using Taylor’s hypothesis, one can define the local
dissipation rate as

xstd ,
E

0

t SdT

dt
D2

dt

t
, s17d

and the corresponding scaling of the moments of the local
dissipation ratef19g as

kxstdpl
kxstdlp , t−mp. s18d

Analogous considerations can be brought to bear for the
magnitude of the temperature gradient

FIG. 3. Normalized momentskxstdpl and kx*stdpl againstt for
the data obtained in convectionsp=2,3,4d. The straight lines
drawn to indicate scaling are best fits to the data on the left of the
vertical arrow.

FIG. 1. Spectrum of a one-dimensional surrogate of the magni-
tude of the temperature fluctuations gradient in thermal convection.
The straight line is drawn to indicate the power-law spectrums12d.

FIG. 2. Autocorrelation functionCstd plotted against logt,
computed for the same data used for the spectral calculations. The
vertical arrow here and in Fig. 3 indicates the end of the inertial
range.
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x*std ,
E

0

t SdG

dt
D2

dt

t
, s19d

with exponentsmp
* . We show in Fig. 3 the dependence of the

normalized momentskxstdpl andkx*stdpl on t calculated for

the data obtained in thermal convection. The slopes of these
straight lines provide us with the values of the intermittency
exponentsmp and mp

* , which are shown in Fig. 4. The two
sets of intermittency exponents obtained forT andG are very
close.

In summary, we have derived an equation for the magni-
tude of the temperature gradientG in thermal convection and
shown that there are general circumstances under which the
equation is identical to that governing the temperature itself.
The main difference is that the velocity appearing in the new
equation for the gradient magnitude, being a conditional av-
erage, is a smoothed field. For the advection-diffusion equa-
tion governed by a smooth velocity field, it is natural to
expect a power-law spectrum with a slope of −1; measure-
ments of the spectral density ofG are consistent with this
expectation. The correlation function ofG shows a logarith-
mic behavior, also as expected. Finally, the scaling of the
square of the derivative ofG has scaling exponents that are
identical to those of the temperature itself, confirming that a
deep analogy exists betweenT andG in the inertial range.

We thank J. Schumacher and V. Yakhot for brief discus-
sions at an early stage of the work.
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FIG. 4. Intermittency exponentsmp and mp
* extracted as slopes

of the straight lines in Fig. 3fEq. s18dg.

SREENIVASAN, BERSHADSKII, AND NIEMELA PHYSICAL REVIEW E71, 035302sRd s2005d

RAPID COMMUNICATIONS

035302-4


